Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Res ; 214(Pt 4): 114106, 2022 11.
Article in English | MEDLINE | ID: covidwho-1983020

ABSTRACT

The use of disposable face masks increased rapidly among the general public to control the COVID-19 spread. Eventually, it increased the disposal of masks and their associated impacts on environmental pollution. Hence, this study aims to analyze the impact of nonwoven fabric structural parameters and weathering on the microfiber release characteristics. Spunbond polypropylene nonwoven with four different weights and meltblown nonwoven with two different weights were used in this study to analyze microfiber release at dry, and wet conditions to simulate improper disposal in the environment. Exposure to sunlight significantly increases the microfiber release from 35 to 50% for spunbond fabric and 56-89% for meltblown fabric. Weathering in sunlight structurally affected the tensile properties of the polypropylene fibers due to photodegradation. The study showed that each mask can produce 1.5 × 102 and 3.45 × 101 mg of microfiber/mask respectively in dry and wet states. In the case of structural parameters, a higher GSM (grams per square meter), abrasion resistance, bursting strength, and thickness showed a positive correlation with microfiber release in both fabrics. Significantly a higher microfiber release was reported with meltblown fabric than the spunbond for a given GSM. The presence of finer fibers and more fibers per unit area in meltblown fabric was noted as the main cause. Nonwoven fabric GSM and the number of fibers in a specific area showed a higher influence on microfiber release. Based on the mask consumption reported in the literature, India alone can produce around 4.27 × 102 tons of microfibers/week as an average of dry and wet conditions. The study suggests that the proper selection of physical parameters can significantly reduce the microfiber fiber release at all stages.


Subject(s)
COVID-19 , Masks , Humans , India , Polypropylenes , Textiles
2.
J Hazard Mater ; 417: 126036, 2021 09 05.
Article in English | MEDLINE | ID: covidwho-1235928

ABSTRACT

The COVID-19 pandemic has driven explosive growth in the use of masks has resulted in many issues related to the disposal and management of waste masks. As improperly disposed masks enter the ocean, the risk to the marine ecological system is further aggravated, especially in the shoreline environment. The objective of this study is to explore the changing characteristics and environmental behaviors of disposable masks when exposed to the shoreline environment. The transformation of chain structure and chemical composition of masks as well as the decreased mechanical strength of masks after UV weathering were observed. The melt-blown cloth in the middle layer of masks was found to be particularly sensitive to UV irradiation. A single weathered mask can release more than 1.5 million microplastics to the aqueous environment. The physical abrasion caused by sand further exacerbated the release of microplastic particles from masks, with more than 16 million particles released from just one weathered mask in the presence of sand. The study results indicate that shorelines are not only the main receptor of discarded masks from oceans and lands, but also play host to further transformation of masks to plastic particles.


Subject(s)
COVID-19 , Microplastics , Humans , Oceans and Seas , Pandemics , Plastics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL